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e now consider the formal mechanism for displaying views of a picture

on an output device. Typically, a graphics package allows a user to
specify which part of a defined picture is to be displayed and where that part is
to be placed on the display device. Any convenient Cartesian coordinate system,
referred to as the world-coordinate reference frame, can be used to define the pic-
ture. For a two-dimensional picture, a view is selected by specifying a subarea of 9
the total picture area. A user can select a single area for display, or several areas
could be selected for simultaneous display or for an animated panning sequence
across a scene. The picture parts within the selected areas are then mapped onto
specified areas of the device coordinates. When multiple view areas are selected,
these areas can be placed in separate display locations, or some areas could be in-
serted into other, larger display areas. Transformations from world to device co-
ordinates involve translation, rotation, and scaling operations, as well as proce-
dures for deleting those parts of the picture that are outside the limits of a
selected display area.

6-1 wunhus o W 7 Cmepudte ?‘*W”“
THE VIEWING PIPELINE 7

R _‘“

DA world{oordmate area selected for display is called a window. An area on a .

: ‘“dlsplay device to which a window is mapped is called a viewport. The window

defines what is to be viewed; the viewport defines where it is to be displayed.
Often, windows and viewports are rectangles in standard position, with the rec-
tangle edges parallel to the coordinate axes. Other window or viewport geome-

 tries, such as general polygon shapes and circles, are used in some applications,

- but these shapes take longer to process. In In gener; eral, the mappmg of a part of a
~ world-coordinate scene to device coordinates is referred to as a viewing transfor-

mation. Sometimes the two-dimensional viewing transformation is simply re-

terred to as the wmdou»to—gﬂg_tmnsfonnanon or the windowing transformation.
But, in general, viewing involves more thart just the fransformation from the win-
dow to the viewport. Figure 6-1 illustrates the mapping of a picture section that
falls within a rectangular window onto a designated rectangular viewport. °

area of a piceure | that 18 selegtr‘i for wewmg, as defmed at the bebmmng of this
section. Unfortunately, the same term

to refer to any rectangular s
made active or inactive. In this er, we will only use the term window to
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Setting up a rotated world window in viewing coordinates and the

corresponding normalized-coordinate viewport.

fixed-size viewport. As the windows are made smaller, we zoom in on some part
of a scene to view details that are not shown with larger windows. Similarly,
t from a section of a scene with succes-

more overview is obtained by zooming ou
sively larger windows. Panning effects are produced by moving a fixed-size win-
dow across the various objects in a scene. -
[Viewports are typically defined within the unit square (normalized coordi-
nates). This provides a means for separating the viewing and other transforma-
tions from specific output-device requirements, so that the graphics package is
largely device-independent.|Once the scene has been transferred to normalized
coordinates, the unit square is simply mapped to the display area for the particu-
lar output device in use at that time. Different output devices can be used by pro-
viding the appropriate device drivers.
When all coordinate transformations are completed, viewport clipping can
be performed in normalized coordinates or in device coordinates. This allows us
- to reduce computations by concatenating the various transformation matrices.
- Clipping procedures are of fundamental importance in computer graphics. They
are used not only in viewing transformations, but also in window-manager sys-
s, in painting and drawing packages to eliminate parts of a picture inside or
e of a designated screen area, and in many other applications. 2
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b-4 —
TWO-DIMENSIONAL VIEWING FUNCTIONS

We define a viewing reference system in a PHIGS application program with the
following function:

evaluateViewOrientationMatrix (x0, yoO, J:(V, YV,
error, viewMatrix)

of viewing transformation matrices can be defined in an application.

To set up the elements of a window-to-viewport mapping matrix, we in-
voke the function

evaluateViewMappingMatrix (xwmin, XWmax, ywmin, ywmax,
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6-5
/ CLIPPING OPERATIONS v

, z:(}enerally, any procedure that identifies those portions of a picture :ﬁat?m € ::181:) i
~ inside or outside of a specified region of space is re?ferred to asa ppﬁl&cd :
rithm, oﬂrﬂ,si,glpjyhclipging. The region against which an object is to clipped is
called a clip window. _ T
Applications of clipping include extracting part of a defme'd scene 0 e
ing; identifying visible surfaces in three-dimensional views; anh_a.lmsmg line bL‘&,‘-'
ments or object boundaries; creating objects using sohd-mod?ln?g procedgrca,
displaying a multiwindow environment; and drawing and painting operahon.s
that allow parts of a picture to be selected for copying, moving, erasing, or dupli-
cating. Depending on the application, the clip window can be a general polygon
or it can even have curved boundaries. We first consider clipping methods using,
rectangular clip regions, then we discuss methods for other clip-regicon shapes.
- Forthe viewing trahsfg_r_nlqtion, we want to display only those picture parts
that are within the window area ( assuming that the clipping flags have not been

set to noclip), Everything outside the window is discarded. Clipping al gorithms
50 that only the contents of the window in-

can be applied in world coordinates, so {}
terior are mapped to dev: ' srnative

t1or are mapped to device coordinates, Alternatively _the complete world-coor-
Inates, Or-normalized device
port pgyndaries.--‘World—coordinatc
: -—1OVES those pri | € Window from further considera-
tion, t us eliminatin the processifp =oe... < vt e
d?izii ~-=inating - Processing Necessary to transform tho e primitives to
LVice space. VxewPort chppmg, on the other |y :
low: ] ik €r hand, can redye calculations by al-

Mg concatenation of Viewing and - :
- &€0metric transformation matrices. But

dinate picture can be map ped first to device coord

coordinates, then "(j ed against the yieyw
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viewport clipping does require gl B TAASICTIENER 10 ¢ e TGS b
] perfnrmed for all objects, inchading those cuisile U oy & O raster
sysiems, clipping algorithms are offen o R Wk s L TITROR.

In the following secticas, we conside algorithms for dy ming e rouowIng
l primitive fypes \

» Point Clipping
s Line Clipping (straight-line segments)
- o AreaClipping (polygons)
; o Curve Clipping
| o Text Clipping

Line and polygon dipping routines are standard components of graphics pack-
i ages, but many packages accommodate curved objects, particularly spline curves
: and conics, such as circles and ellipses. Another way to handle curved objects is
io approximzate them with straight-line segments and apply the line- or polygon-
clipping procedure.

6-6
\/POINT CLIPPING ~

¢ Assu;x\mg that the clip window is a rectangle in standard position, we save a
point P = (r, ) for display if the following inequalities are satisfied:

Wi <% S—"rwm‘

Yin =¥ = VWi .

where the edges of the dip Window (00 uin, XWonass Yiliminy Ygna) CAN be either the
world-coordinate window boundaries or viewport boundaries. If any one of
these four inequalitiesis not satisfied, the point is clipped (not saved for display).
Although point clipping is applied less often than line or polygon clipping,

some applications may require a poi t-clipping procedure. For example, point
ipping can be applied to scenes involving explosions or sea foam that are mod-
~eled with particles (points) distributed in some region of the scene- /, i

f B 67 ‘
" 4/ LINECLIPPING LA

"' Fi'égr‘e 6-7 illustrates possible relationships be
 rectangular dipping region. A line-clipping procedure involves several parts.
First, we can test a given line segment to determine whether it lies completely in-
side the clippirg window. If it does not, we try to determine whether it lies com-

~ pletely outside the window. Finally, if we cannot identify a line as completely in-
gdeor completely outside, we must perform intersection calculations with one
o more clipping boundaries. We process lines through the “inside-outside” tests
o checking the line endpoints. A line with both endpoints inside all clipping
aries, such as the line from Py to Py is saved. A line with both endpoints
any one of the clip boundaries (line P,P; in Fig. 6-7) 15 outside the win-

tween line positions and standard

225
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Figure 6-7
Line clipping against a rectangular clip window,

dow. All other lines cross one or more clipping boundaries, and may require cal-
culation of multiple intersection points, To minimize calculations, we try to de-
vise clipping algorithms that can efficiently identify outside lines and reduce in-
tersection calculations,

For a line segment with endpoints (x;, y,) and (x,, y,) and one or both end-
points outside the clipping rectangle, the parametric representation

x=x+ulx,~x)

Yy=ntulp-y), 0=y=<i

could be used to determine values of parameter u for intersections with the clip-
~ ping boundary coordinates, f the value of u for an intersection with a rectangle
~ , boundary-edge is outside the range 0 to 1, the line does not enter the interior of
the window at that' boundary: If the value of u is within the range from 0 to 1, the
‘ line segment does indeed cross into the clipping area. This method can be ap-
plied to each clipping boundary edge in turn to determine whether any part of
the line segment is to be displayed. Line segments that are parallel to window
edges can be handled as special cases,

Clipping line segments with these parametric tests requires a good deal of
computation, and faster approaches to clipping are possible. A number of effi-
cient line clippers have been developed, and we survey the major algorithms in
the next sections. Some algorithms are designed explicitly for two-dimensional
pictures and some are easily adapted to three-dimensional applications.]

i
SR

-%ohen-Sutherland Line Clipping  //

~* This s one of the oldest and most ular line-clippin procedures. Generally,
- the method speeds up the processing?; line sen;n-cenptz b)g performing initial tes’f
at reduce the number of intersections tha must be caiculated. Every line end
o : Scanned by CamScanner
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1 5. % ' (! ’
L ointm avishie i «sil o i Gunsdigit binary code, called a region code, that
o e it relative to the boundaries of the clipping rec:

I S

, v oe .
A aemdibian o lamasion o
CACIILAAG U ke AU vas

\angle. Regions are cer vy i ifrreace (e Loundaries as shown in Fig, 0-8.
fack Bit nosion in the region ~ode e wead to indicate one of the fonr relative co-
ordinate positions of the point with respect to the clip window: to the left, right,
top, or bottom. By numbering the bit positions in the region code as 1 through

{ from right to left, the coordinate regions can be correlated with the bit posi-

tions as

bit 1: left .

: bit 2: right

\ bit 3: below **
bit 4: above ,

A value of 1 in any bit position indicates that the point is in that relative position;
otherwise, the bit position 1s set to 0. If a point is within the clipping rectangle,
the region code is 0000. A point that is below and to the left of the rectangle has a
region code of 0101.

Bit values in the region code are determined by comparing endpoint coordi-
nate values (v, ) to the clip boundaries. Bit 1 is set to 1 if x < xwWyy,- The other
three bit values can be determined using similar comparisons. For Tanguages in
which bit manipulatlon is possible, region-code bit values can be determined
with the following two steps: (1) Calculate differences between endpoint coordi-
nates and clipping boundaries. (2) Use the resultant sign bit of each difference
calculation to set the corresponding value in the region code. Bit 1 is the sign bit
of X — xw,y,; bit 2 is the sign bit of XwWpa — X/ bit 3 is the sign bit of y — YW and
bit 4 is the sign bit of YW — ¥-

Once we have established region codes for all line endpoints, we can
quickly determine which lines are completely inside the clip window and which
are clearly outside. Any lines that are completely contained within the window
houndaries have a region code of 0000 for both endpoints, and we trivially accept
these lires. Any lines that have a 1 in the same bit position in the region codes for
each endpoint are completely outside the clipping rectangle, and we trivially re-
ject these lines. We would discard the line that has a region code of 1001 for one
endpoint and a code of 0101 for the other endpoint. Both endpoints of this line
are left of the clipping rectangle, as indicated by the 1in the first bit position of
each region code. A method that can be used to test lines for total clipping is to.
perform the logical nd operation with both region codes. If the result is not 0000,
the line is completely outside the clipping region. s '

“Yines that cannot be idenified as completely inside or completely outside a
clip window by these tests are checked for intersection with the window bound-
aries. As shown in Fig. 6-9, such lines may or may not cross into the window in-
. terior. We begin the clipping process for a line by comparing an outside endpoint
e tp.a clipping boundary to determine how much of the line can be discarded.
ki - Then the remaining part of the ling is checked against the other boundaries, and
~ we continue until either the line is totally discarded or a section is found inside
T _-QWW: 'We set up our algorithm to check line endpoints against clipping

i hm in the order left, right, bottom, top.
Lt @Mle the specific steps in clipping lines against rectangular bound-
wmlCohen-bulherlnnd algorithm, we show how the lines in Fig. 6-9
‘IW Starting with the bottom endpoint of the line from Py to P,,

T TR R B B v T

e R A A Y —-——

Section o7

Line Clizping

/o 48 ° R o PR
Cr B LA ]
yof 7
L 2wl
| VB0
0001 | 0904, | Boro
r 4 ?Mf ]
- - -‘—‘ M 1
|
0119; e 01000 | ‘%zw
* ! “"YQ i

Figure -6

Binary region codes assigned
to line endpoints according to
relative position with respect
to the clipping rectangie.
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we check P, against the left, right, and bottom boundaries in turn and find that
this point is below the clipping rectangle. We then find the intersection point P,
with the bottom boundary and discard the line section from P; to Py. The line
now has been reduced to the section from P} to P,. Since P, is outside the clip
window, we check this endpoint against the boundaries and find that it is to the
left of the window. Intersection point P} is calculated, but this point is above the
window. So the final intersection calculation yields P, and the line from P; to P
is saved. This completes processing for this line, so we save this part and go on to
the next line. Point P; in the next line is to the left of the clipping rectangle, so we
determine the intersection P; and eliminate the line section from P; to P3. By
checking region codes for the line section from P to P, we find that the remain-
der of the line is below the clip window and can be discarded also.
Intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. For a line with endpoint coordinates (x;,
0 y,) and (x,, ), the y coordinate of the intersection point with a vertical boundary
can be obtained with the calculation

y=y +mlx —x)

where the x value is set either to xwm or t0 Xy, and the slope of the line is cal-
culated as m = (y, — y;)/(x; — x,). Similarly, if we are looking for the intersection
@ with a horizontal boundary, the x coordinate can be calculated as

r=1 +1-

with y set either to Yy, or to ywm,Q j
The following procedure demonstrates the Cohen-Sutherland line-clipping

algorithm. Codes for each endpoint are stored as bytes and processed using bit
manipulations.

§define ROUND(a) ((int) (a40.5))

J* Bit masks encode a point's position relative to the clip edges. A
|  point's status is encoded by OR'ing together appropriate bit masks. l

0xl

@
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wre 613 .
, two possible sets of clipping regions used in the NLN algorithm when P, is above and
‘the left of the clip window.

L

)

And an intersection position on the top boundary has y = yr and u =
(yr — ¥/ (y, = yy), with

x=xl+ f.g....—._xl(y,l.—yl) SEAE,
.= c

Hovine Ucng Nonrectangular Clip Windows Vel

In some applications, it is often necessary to clip lines against arbitrarily shaped
polygons. Algorithms based on parametric liae equations, such as the
Liang-Barsky method and the earlier Cyrus-Beck approach, can be extended eas-
ily to convex polygon windows. We do this by modifying the algorithm to in-
clude the parametric equations for the boundaries of the clip region. Preliminary
screening of line segments can be accomplished by processing lines against the
coordinate extents of the clipping polygon. For concave polygon-clipping re-
gions, we can still apply these parametric clipping procedures if we first split the
Concave polygon into a set of convex polygons.

Cixcles or other curved-boundary clipping regions are also possible, but less
commonly used. Clipping algorithms for these areas are slower because intersec-
tion calculations involve nonlinear curve equations. At the first step, lines can be
Cl'ipped against the bounding rectangle (coordinate extents) of the curved clip-
ping region. Lines that can be identified as completely outside the bounding rec-
tangle are discarded. To identify inside lines, we can calc::late the distance of line
endpoints from the circle center. If the square of this distance for both endpoints
of a line is less than or equal to the radius squared, we can save the entire line.

The. remaining lines are then processed through the intersection calculations,
which must solve simultaneous circle-line equations,

| Splitting Cune ave Volypons G

we can identify a concave polygon by calculating the cross products of succes-
sive edge vectors in order around the polygon perimeter. If the z component of

oeaLre
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Chapter 6
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Figure 6-14
Identifying a concave polygon by calculating cross
products of successive pairs of edge vectors.

some cross products is positive while others have a negalive 2 comporent, we

have a concave polygon. Otherwise, the polygon is convex. This is assuming that
no series of three successive vertices are collinear, in which case the cross product
of the two edge vectors for these vertices is zero. If all vertices are collinear, we
have a degenerate polygon (a straight line). Figure 6-14 illustrates the edge-
vector cross-product method for identifying concave polygons.

A vector method for splitting a concave polygon in the xy plane is to calculate
the edge-vector cross products in a counterclockwise order and to note the sign
of the z component of the cross products. If any z component turns out to be neg-
ative (as in Fig. 6-14), the polygon is concave and we can split it along the line of
the first edge vector in the cross-product pair. The following example illustrates
this method for splitting a concave polygon.

Example 6-2: Vector Method for Splitting Concave Polygons

ngure 6-15 shows a concave polygon with six edges. Edge vectors for this poly-
gon can be expressed as

E, =(1,0,0), E,=(1,1,0)

E=(-1,0, E=020

E;=(-3,0,0, E=(0,-2,0)

- where the z component is 0, since all edges are in the xy plane. The cross product

E;XE; for two successive edge vectors is a vector perpendicular to the xy plane
with z component equal to ExEy — E,Eiy

El X E2 = (0, 0, 1), Ez X E3 = (0, 0, _2)

E3 X E4 = (0, 0, 2), E4 X ES = (O, 0, 6)

E; XﬁEe =(0,0,6), E(XE =(0,0,2)
Since the cross product E, X E; has a negative z component, we split the polygon

:_along the line of vector E,. The line equation for this edge has a slope of 1 and a'y
intercept of —1. We then determine the intersection of this line and the other

AN
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N Splitting a concave,
> B (o therotational method, After _
2 :‘ L mv,mﬂ'xmm -
ik Y s Yelow the x ais, Sowe
split the golygom along the line

v, AV, ) l_p‘ :

potygon edges to split the polygon into two pieces No other edge croms products
are negative, 5o the two new polygons are both cunvex.

g

We can also split a concave polygon using 2 rotational method, Proceeding
countercockwise around the polygon edges, we translate each polygon vertex V,
i turn to the coordinate origin. We then rotate in 2 dockwise direction 50 that
the next vertex V., is on the 7 axis. 1f the next vertex, V., 15 below the 1 axis, the
polygon is concave. We then split the polygon into two new polygons along the x
aﬁsandrepmttheommvetwtformh of the two new polygons, Otherwise, we
confinue o Totate vertices on the x axis and to test for negative y vertex values,
Figure 6-16 illustrates the rotational method for splitting a concave polygon.

o

8 e P
POIYGON CLIPPING ~ "

- To dip polygons, we need o modify the line-clipping proceduscs discussed in
ﬂlepmioussedimApdygonboundarypmcessedwimwne_chpper,mybe

26 2 sexies of ynconneted line segments (Fig. 6-17), depending on the
 exientation of the polygon to the clipping, window. What we really wanl to dis- {
Mabmﬂedam:ﬁerdipping,asmFigéd&l’orpolygonclipping,were-
'ﬁzawwmmb&wmmdﬂwdarmthatmthmmn

 comverted for the appropriate area 11, The output of a polygon dipper should be
sequence of vertices that defines the dipped polygon boundaries,

R

.

Figure 617
Display of a polygon processed by a
23
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; Display of a correctly clipped
Before Clipping After Clipping  polyeon. :
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We can correctly clip a polygon by processing the polygon boundary as a whole
against each window edge. This could be accomplished by processing all poly-

gon vertices against each clip rectangle boundary in turn. Beginning with the ini-

tial set of polygon vertices, we could first clip the polygon against the left rectan-

gle boundary to produce a new sequence of vertices, The new set of vertices
could then be successively passed to a right boundary clipper, a bottom bound-

ary clipper, and a top boundary clipper, as in Fig. 6-19. At each step, a new se-
quence of output vertices is generated and passed to the next window boundary
clipper.
There are four possible cases when processing vertices in sequence around
the perimeter of a polygon. As each pair of adjacent polygon vertices is passed to
a window boundary clipper, we make the following tests: (1) If the first vertex is
outside the window boundary and the second vertex is inside, both the intersec-
tion point of the polygon edge with the window boundary and the second vertex
are added to the output vertex list. (2) If both input vertices are inside the win-
dow boundary, only the second vertex is added to the output vertex list. (3) If the
first vertex is inside the window boundary and the second vertex is outside, only
the edge intersection with the window boundary is added to the output vertex
list. (4) If both input vertices are outside the window boundary, nothing is added
to the output list. These four cases are illustrated in Fig. 6-20 for successive pairs
of polygon vertices. Once all vertices have been processed for one clip window

Sutherland-Hodgeman Polygon Clipping k/

boundary, the output list of vertices is clipped against the next window bound- -
Lk

(Fein
| o ;‘_.!, ¥
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Successive processing of pairs of polygon vertices agains: the left window boundary.

We illustrate this method by processing the area in Fig. 6-21 against the left
window boundary. Vertices 1 and 2 are found to be on the outside of the bound-
ary, Moving along to vertex 3, which is inside, we caiculate ihe intersection and
save both the intersection point and vertex 3. Vertices 4 and 5 are determined fo
be inside, and they also are saved. The sixth and final vertex is outside, so we
find and save the intersection point. Using the five saved points, we would re-
peat the process for the next window boundary.

Implementing the algorithm as we have just described requires setting up
storage for an output list of vertices as a polygon is clipped against each window
boundary. We can eliminate the intermediate output vertex lists by simply clip-
ping individual vertices at each step and passing the clipped vertices on to the
next boundary clipper. This can be done with parallel processors or single
processor and a pipeline of clipping routines. A point (either an input vertex or a

calculated intersection point) is added to the output vertex list only after it has  ; <& L)

been been determined to be inside or on a window boundary by all four bound-
ary dlippers. Otherwise, the point does not continue in the pipeline. Figure 6-22

~ shows a polygon and its intersection points with a clip window. In Fig. 6-23, we

illustrate the progression of the polygon vertices in Fig. 6-22 through a pipeline
of boundary clippers’

The following procedure demonstrates the pipeline clipping approach. An
array, s, records the most recent point that was clipped for each clip-window

fary, The main routine passes each vertex p to the c1ipPoint routine for
clipping against the first window boundary. If the line defined by endpoints p
and s [boundary] crosses this window boundary, the intersection is calculated
and passed to the next clipping stage. If p is inside the window, it is passed to the
next clipping stage. Any point that survives clipping against all window bound-

‘aries is then entered into the output array of points. The array first Point stores

 for each window boundary the first point clipped against that boundary. After all
 polygon vertices have been processed, a closing routine clips lines defined by the

d last points clipped against each boundary.

Clipping a polygon against
the left boundary of 2
window, starting with vertex
1. Primed numbers are used
to label the points in the
output vertex list for this

window boundary.

-

enum { Left, Right, Bottom, Top } Edge;
mz 4

wePt?2 p, Edge b, dcPt wMin, dcpt wMax)

|
|
]
|
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Processing the vertices of the polygon in Fig. 6-22 through a boundary-clipping pipeline,
After all vertices are processed through the pipeline, the vertex list for the clipped polygon
is (V3, V3, V3 Vil

< wMin.x) return (FALSE); break;

case Left: if (p.x
case Right: if (p.x > wMax.x) return (FALSE); break;
case Bottom: if (p.y < wMin.y) return (FALSE); break;
case Top: if (p.y > wMax.y) return (FALSE); break;
}
return (TRUE);
i)
| , .
int cross (wcPt2 pi, wcPt2 p2, Edge b, dcPt wMin, dcPt wMax)
{ ]
if (inside (pl, b, wMin, wMax) == inside (p2, b, wMin, wMax))

return (FALSE);
{ else return (TRUE);

}

]

wcPt2 intersect (wcPt2 pl, wcPt2 p2, Edge b, dcPt wMin, dcPt wiax)

{
wcPt2 iPt;
float m;

af (pl.x != p2.x) m = (pl.y - p2.y) / (pl.x - p2.X);
switch (b) ({
case Left:
iPt.x = wMin.x;
iPt.y = p2.y + (wMin.x - p2.x) * m;
break;
case Right:
iPt.x = wMax.x;

240

Scanned by CamScanner

Q)

et o TS

e i —— R R S L RS SR s e



v

L ]
(wtop!|
i
Il
V,‘

L]

i

in (b).

ing rules:

this approach.

is calculated as t

Other Pelygen-Clippi

Various parametric Jine-
clipping, And th

s
TR A

clipping
polygon

(rasuma) 4

Ciipping a concave poly
algorithm ge

to-outside pair. For clock

In Fig. 6-25, the processi
sulting clipped polyg

ey are par

gon-clipping windows. The Li

tended to polygon clipping Wi

Jand-Hodgeman method. Par
or around the polygon perime

n line clipping:

polygon edges in ord
dures similar to those used i

\'
it
JLO N |
uer M
v,
Vi
. “
v:?‘ Ve
|

(a)

e For an outside-to-inside pair of ve
¢ Foran inside-to-outside
a clockwise direction.

which applies constructive solid geometry i
against any polygon-¢
For the
he intersection of the ¢

gon (a) with the Weiler-Atherton
nerates the two separate polygon areas

wise processing of polygen vertices, we use the foliow-

pair of vertices, follow the window boundary in

on in the Weiler-Atherton algorithm and the re-

ng directi
for a rectangular clipping window.

on is shown

lipping regio
two polygons in thig figure, t

clipping metho
ticularly well
ang-Bars
th a general approach sini
amelric line representatio

S_gﬂicm [

Pedygon Chigs ng 4

4

{b)

rtices, follow the polygon boundary.

Atherton algorithm is the Weiler algorithm,
deas to clip an arbitrary polygon
n. Figure 6-26 illustrates the general idea in
he correctly clipped polygon
lipping polygon and the polygon object. | ;p

19 Algorithms WA

ds have also been adapted to polygon
suited for clipping against convex poly-

ky Line Clipper, for example, can be ex=
lar to that of the Suther- 3

ns are used to process
ter using regjion-testing Proce”

243

™

Scanned by CamScanner



s J e

e

s AR —‘]’
' ‘. \’--_x\.l}i:’.;\.':'lsitnmi Viewing  CLIRVE CLIPPING \_/

]

Areas with curved boundaries can be clipped with methods siuiar to those dis- :
cussed i the previous sections. Curve-clipping procedures will involve nonlin- ,)
ear equations, however, and this requires more processing than for objects with i
linear boundaries. ' s

The bounding rectangle for a circle or other curved object can be used first ;:
to test for overlap with a rectangular clip window. If the bounding rectangle fgr ‘
the object is completely inside the window, we save the object. If t!\g rectangle is
determined to be completely outside the window, we discai iil'e object. 4ln either
case, theie is no further computation necessary. But if the bounding r.ectangle test
fails, we can look for other computation-saving approaches. For a circle, we can
use the coordinate extents of individual quadrants and then octants for prelimi-
nary testing before calculating curve-window intersections. For an ellipse, wecan |
test the coordinate extents of individual quadrants. Figure 6-27 illustrates circle
clipping against a rectangular window. .

Similar procedures can be applied when clipping a curved object against a
general polygon clip region. On the first pass, we can clip the bounding rectapgle
of the object against the bounding rectangle of the clip region. If the two regions

. overlap, we will need to solve the simultaneous line-curve equations to obtain
the clipping intersection points.

l

"~ Before Clipning

o e B b M S S e

After Clinping

Clipping a filled circle.

6-10 e
TEXT CLIPPING "

: ) Thete are several techniques that can be used to provide text clipping in a graph-
STRING 11
|

_ics package. The clipping technique used will depend on the methods used to
generate characters and the requirements of a particular application.

The simplest method for processing character strings relative to a window

_______ ‘ boundary is to use the all-or-none string-clipping strategy shown in Fig. 6-28. If all

|STRING 2! of the string is inside a clip window, we keep it. Otherwise, the string is dis-

e carded. This procedure is implemented by considering a bounding rectangle
Before Clipping

around the text pattern. The boundary positions of the rectangle are then com-
pared to the window boundaries, and the string is rejected if there is any overlap,
This method produces the fastest text clipping.
An alternative to rejecting an entire character string that overlaps a window
boundary is to use the all-or-none character-clipping strategy. Here we discard onl
those characters that are not completely inside the window (Fig. 6-29). In this
case, the boundary limits of individual characters are compared to the window,

Any character that either overlaps or is outside a window bound
STRING 2 A final method for h

vidual characters. We no

ary is clipped.
andling text clipping is to clip the components of indi-
w treat characters in much the same way that we treated

After Clipping lines. If an individual character overlaps a clip window boundary, we clip off the
3 -~ . parts of the character that are outside the window (Fig. 6-30). Outline character
Figure 6-28 fonts formed with line segments can be processed in this way using a line-
Text clipping using a clipping algorithm. Characters defined with bit maps would be clippod\ by com-
bognding rectangle about the  paring the relative position of the individual pixels in the character grid patterns
- entirestring, to the clipping boundaries. J 2 it T
LA Wi 1
Lo Vil Pl LT
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}So 'un", we have considered oniy procedures for clipping a picture w i inerior i d
“of a region by eliminating everything outside the clipping region. What is saved 77 1

by these procedures is inside the region. In some cases, we want to do the reverse, | ‘ .,
: that is, we want to clip a picture to the exterior of a specified region. The picture | ;f‘v
st parts to be saved are those that are nutside the region. This is referred to as exte- JT‘, NG 2 v ,
T rior clipping. . !
N A typical example of the application of exterior clipping it in muitiple- i
r window systems. To correctiy dispiay the screen windows, we often need to ]
t
l

apply both internal and externai clipping. Figure 6-31 illustrates a multiple-

window display. Objects within a window are clipped to the interior of that win-

dow. When other higher-priority windows overlap these objects, the objects are ]
also clipped to the exterior of the overlapping windows. NG 1
‘ Fxterior clipping is used also in other applications that require overlapping
i pictures. Examples here include the design of page layouts in advertising or pub-
lishing applications or for adding labels or design patterns to a picture. The tech- TRING 2 !
nique can also be used for combining graphs, maps, or schematics. For these ap- e | .
plications, we can use exterior clipping to provide a space for an insert into a Qi
larger picture. After Clipping

~ Procedures for clipping objects to the interior of concave polygon windows
can also make use of external clipping. Figure 6-32 shows a line P;P, that is to be Figure 629

clipped to the interior of a concave window with vertices V;V,V;V,Vs. Line P,P, Te>'<t dlipping using 2

can be clipped in two passes: (1) First, PP, is clipped to the interior of the convex o nging rectangle about
polygon V,V,V,V, to yield the clipped segment PiP', (Fig. 6-32(b)). (2) Then an  individual characters.
external clip of P;P'; is performed against the convex polygon V,VsV, to yield

the final clipped line segment PiP,. | ~
Sty A

§TRING 1

SUMMARY

In this chapter, we have seen how we can map a two-dimensional world- 9|?
coordinate scene to a display device. The viewing-transformation pipelir “~- : =)

are Clipping H

'y
(o))

. .
Modeh ave sorlinsness! 4 °
The ZingerMudel Nelicopt ¢ KRE

Murketing Visn
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Figure 632
Clipping line P, P, to the interior of a concave polygon with vertices V;V,V3V,V; (), using
convex polygons V,V,V,V, (b) and V; V5V, (c), to produce the clipped line P;P;.

cludes constructing the world-coordinate scene using modeling transformation
transferring world-coordinates to viewing coordinates, mapping the viewin;
coordinate descriptions of objects to normalized device coordinates, and final
mapping to device coordinates. Normalized coordinates are specified in th
range from 0 to 1, and they are used to make viewing packages independent «
particular output devices.

Viewing coordinates are specified by giving the world-coordinate positic
of the viewing origin and the view up vector that defines the direction of t}
viewing y axis. These parameters are used to construct the viewing transform.
tion matrix that maps world-coordinate object descriptions to viewing coord

, nates.

A window is then set up in viewing coordinates, and a viewport is specifie
in normalized device coordinates. Typically, the window and viewport are re
tangles in standard position (rectangle boundaries are parallel to the coordina
axes). The mapping from viewing coordinates to normalized device coordinat:
is then carried out so that refative positions in the window are maintained in
viewport.

Viewing functions in a graphics programming package are used to crea
one or more sets of viewing parameters. One function is typically provided -
calculate the elements of the matrix for transforming world coordinates to viey
ing coordinates. Another function is used to set up the window-to-viewpo
fransformalion matrix, and a third function can be used to specify combinatios
of viewing transformations and window mapping in a viewing table. We ce
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